Skip to Main Content

Study Design 101: Case Control Study

Case Control Study

Definition

A study that compares patients who have a disease or outcome of interest (cases) with patients who do not have the disease or outcome (controls), and looks back retrospectively to compare how frequently the exposure to a risk factor is present in each group to determine the relationship between the risk factor and the disease.

Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

Case control studies are also known as "retrospective studies" and "case-referent studies."

Advantages

  • Good for studying rare conditions or diseases
  • Less time needed to conduct the study because the condition or disease has already occurred
  • Lets you simultaneously look at multiple risk factors
  • Useful as initial studies to establish an association
  • Can answer questions that could not be answered through other study designs

Disadvantages

  • Retrospective studies have more problems with data quality because they rely on memory and people with a condition will be more motivated to recall risk factors (also called recall bias).
  • Not good for evaluating diagnostic tests because it's already clear that the cases have the condition and the controls do not
  • It can be difficult to find a suitable control group

Design pitfalls to look out for

Care should be taken to avoid confounding, which arises when an exposure and an outcome are both strongly associated with a third variable. Controls should be subjects who might have been cases in the study but are selected independent of the exposure. Cases and controls should also not be "over-matched."

Is the control group appropriate for the population? Does the study use matching or pairing appropriately to avoid the effects of a confounding variable? Does it use appropriate inclusion and exclusion criteria?

Fictitious Example

There is a suspicion that zinc oxide, the white non-absorbent sunscreen traditionally worn by lifeguards is more effective at preventing sunburns that lead to skin cancer than absorbent sunscreen lotions. A case-control study was conducted to investigate if exposure to zinc oxide is a more effective skin cancer prevention measure. The study involved comparing a group of former lifeguards that had developed cancer on their cheeks and noses (cases) to a group of lifeguards without this type of cancer (controls) and assess their prior exposure to zinc oxide or absorbent sunscreen lotions.

This study would be retrospective in that the former lifeguards would be asked to recall which type of sunscreen they used on their face and approximately how often. This could be either a matched or unmatched study, but efforts would need to be made to ensure that the former lifeguards are of the same average age, and lifeguarded for a similar number of seasons and amount of time per season.

Real-life Examples

Boubekri, M., Cheung, I., Reid, K., Wang, C., & Zee, P. (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine, 10(6), 603-611. https://doi.org/10.5664/jcsm.3780

This pilot study explored the impact of exposure to daylight on the health of office workers (measuring well-being and sleep quality subjectively, and light exposure, activity level and sleep-wake patterns via actigraphy). Individuals with windows in their workplaces had more light exposure, longer sleep duration, and more physical activity. They also reported a better scores in the areas of vitality and role limitations due to physical problems, better sleep quality and less sleep disturbances.

Togha, M., Razeghi Jahromi, S., Ghorbani, Z., Martami, F., & Seifishahpar, M. (2018). Serum Vitamin D Status in a Group of Migraine Patients Compared With Healthy Controls: A Case-Control Study. Headache, 58(10), 1530-1540. https://doi.org/10.1111/head.13423

This case-control study compared serum vitamin D levels in individuals who experience migraine headaches with their matched controls. Studied over a period of thirty days, individuals with higher levels of serum Vitamin D was associated with lower odds of migraine headache.

Related Formulas

Related Terms

Case

A patient with the disease or outcome of interest.

Confounding

When an exposure and an outcome are both strongly associated with a third variable.

Control

A patient who does not have the disease or outcome.

Matched Design

Each case is matched individually with a control according to certain characteristics such as age and gender. It is important to remember that the concordant pairs (pairs in which the case and control are either both exposed or both not exposed) tell us nothing about the risk of exposure separately for cases or controls.

Observed Assignment

The method of assignment of individuals to study and control groups in observational studies when the investigator does not intervene to perform the assignment.

Unmatched Design

The controls are a sample from a suitable non-affected population.

Now test yourself!

1. Case Control Studies are prospective in that they follow the cases and controls over time and observe what occurs.



2. Which of the following is an advantage of Case Control Studies?